Unsupervised Induction of Tree Substitution Grammars for Dependency Parsing

نویسندگان

  • Phil Blunsom
  • Trevor Cohn
چکیده

Inducing a grammar directly from text is one of the oldest and most challenging tasks in Computational Linguistics. Significant progress has been made for inducing dependency grammars, however the models employed are overly simplistic, particularly in comparison to supervised parsing models. In this paper we present an approach to dependency grammar induction using tree substitution grammar which is capable of learning large dependency fragments and thereby better modelling the text. We define a hierarchical non-parametric Pitman-Yor Process prior which biases towards a small grammar with simple productions. This approach significantly improves the state-of-the-art, when measured by head attachment accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inducing Tree-Substitution Grammars

Inducing a grammar from text has proven to be a notoriously challenging learning task despite decades of research. The primary reason for its difficulty is that in order to induce plausible grammars, the underlying model must be capable of representing the intricacies of language while also ensuring that it can be readily learned from data. The majority of existing work on grammar induction has...

متن کامل

Three Dependency-and-Boundary Models for Grammar Induction

We present a new family of models for unsupervised parsing, Dependency and Boundary models, that use cues at constituent boundaries to inform head-outward dependency tree generation. We build on three intuitions that are explicit in phrase-structure grammars but only implicit in standard dependency formulations: (i) Distributions of words that occur at sentence boundaries — such as English dete...

متن کامل

A Framework for Unsupervised Dependency Parsing using a Soft-EM Algorithm and Bilexical Grammars

Unsupervised dependency parsing is acquiring great relevance in the area of Natural Language Processing due to the increasing number of utterances that become available on the Internet. Most current works are based on Dependency Model with Valence (DMV) [12] or Extended Valence Grammars (EVGs) [11], in both cases the dependencies between words are modeled by using a fixed structure of automata....

متن کامل

Unsupervised Bayesian Parameter Estimation for Dependency Parsing

We explore a new Bayesian model for probabilistic grammars, a family of distributions over discrete structures that includes hidden Markov models and probabilitsic context-free grammars. Our model extends the correlated topic model framework to probabilistic grammars, exploiting the logistic normal prior as a prior over the grammar parameters. We derive a variational EM algorithm for that model...

متن کامل

Logistic Normal Priors for Unsupervised Probabilistic Grammar Induction

We explore a new Bayesian model for probabilistic grammars, a family of distributions over discrete structures that includes hidden Markov models and probabilistic context-free grammars. Our model extends the correlated topic model framework to probabilistic grammars, exploiting the logistic normal distribution as a prior over the grammar parameters. We derive a variational EM algorithm for tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010